
Team 4118 

 
 

1 

Optimizing Renewable Energy Grid Integration: 
Forecasting and Scheduling for Wind and Solar Farms 

 

Abstract 

The increasing adoption of renewable energy, particularly wind and solar power, 

presents unique challenges due to the inherent variability in their power outputs. This paper 

focuses on modeling these fluctuations to enhance the integration of wind and solar energy 

into electrical grids. Using data from 12 wind turbines and 11 solar power plants, we 

construct mathematical models to address three key problems: predicting significant 

fluctuations in power generation, interval forecasting of power output for the next 1-120 

seconds, and designing a dynamic scheduling strategy for backup generators. We employ 

Long Short-Term Memory (LSTM) networks combined with Monte Carlo simulation to 

forecast power generation, providing both accuracy and reliability in managing fluctuations. 

A threshold-based scheduling strategy is introduced to activate backup power units, thereby 

maintaining stability and ensuring efficient utilization of generation resources. The results 

demonstrate improved prediction accuracy, effective management of power output variability, 

and enhanced grid stability, contributing to the sustainable integration of renewable energy 

sources. 

 

 

 

Key words: Wind Power Generation, Solar Power Generation, Renewable Energy 

Integration, Power Fluctuation Prediction, Long Short-Term Memory (LSTM) Network, 

Monte Carlo Simulation, Backup Generator Scheduling, Grid Stability, Energy Forecasting, 

Renewable Energy Variability. 

 

 

 

 

 

 

 

 

 



Team 4118 

                                           

2 

Contents  

1.  Introduction ................................................................................................................... 4 

1 . 1 Research Background ............................................................................................... 4 

1 . 2 Problem Restatement ................................................................................................ 6 

1 . 3 Research Significance ............................................................................................... 6 

2. Analysis and Approach .................................................................................................... 7 

3. Assumptions and Justifications ........................................................................................ 8 

4. Notations ......................................................................................................................... 9 

5. Data Processing ............................................................................................................... 9 

6. Question ........................................................................................................................ 13 

 6.1 Question 1: Model Construction and Solution........................................................... 13 

6.1.1 Using the LSTM Model to Predict and Calculate Fluctuation Amplitudes .......... 13 

6.1.2 Results and Evaluation. ...................................................................................... 15 

6.2 Question 2: Model Construction and Solution ........................................................... 16 

6.2.1 A combination of long short-term memory (LSTM) network and Monte Carlo 

simulation is used to predict the confidence interval of future power generation. ......... 16 

6.2.2 Methodology and Results Analysis. ................................................................... 17 

6.3 Question 3: Model Construction and Solution ........................................................... 19 

6.3.1 Data Preprocessing ............................................................................................ 19 

6.3.2 Scheduling Plan for Handling Power Fluctuations. ............................................. 19 

6.3.3 Conclusion. ....................................................................................................... 22 

7. References ..................................................................................................................... 23 

8. Appendix ....................................................................................................................... 24 

 



Team 4118 

                                           

3 

I. Introduction 

1.1 . Research Background 

1.1.1 Principles and Influencing Factors of Wind Power Generation 

The principle of wind power generation involves converting wind kinetic energy into 

electrical energy. This process primarily relies on wind driving the rotation of turbine blades, 

which in turn powers a generator to produce electricity based on the principle of 

electromagnetic induction. The generated electricity is then stepped up through transformers 

and transmitted to the power grid for use. The efficiency of wind power generation is 

influenced by several factors: 

Wind Speed: 

Wind speed is the decisive factor in wind power generation. Wind energy is 

proportional to the cube of wind speed, meaning even slight variations in wind speed 

can significantly affect power output. 

o Optimal wind speed range: Generally between 3 to 25 meters per second. 

Speeds below this range cannot generate electricity, while speeds exceeding 

this range may damage equipment. 

Air Density: 

Higher air density leads to greater wind energy. Air density is influenced by 

temperature, atmospheric pressure, and altitude: 

o Favorable conditions: Low temperature, high atmospheric pressure, and low 

altitude result in higher air density, which is beneficial for power generation. 

Wind Direction Stability: 

Regions with stable wind directions achieve higher generation efficiency. Frequent 

changes in wind direction increase the complexity of equipment adjustments, 

reducing efficiency. 

Terrain and Environment: 

o Open terrain: Locations such as plains, coasts, and ridges often have 

abundant wind resources. 

o Obstructions: Surrounding obstacles like trees or buildings can create wind 

shadow zones, reducing wind speed and, consequently, power generation 

efficiency. 

Wind Turbine Parameters: 



Team 4118 

                                           

4 

o Blade Design: Blade length and shape influence the efficiency of capturing 

wind energy. Longer blades are suitable for low wind speed areas. 

o Generator Efficiency: High-efficiency generators better convert mechanical 

energy into electrical energy. 

o Tower Height: Taller towers experience higher wind speeds, resulting in 

improved generation efficiency. 

Operation and Maintenance: 

Regular maintenance reduces equipment wear and enhances long-term operational 

efficiency. Advanced control systems, such as real-time blade angle adjustments, 

further optimize power generation. 

Temporal and Spatial Distribution of Wind Resources: 

Variations in wind speed and energy across time and space cause fluctuations in 

power output. 

o Seasonal Differences: Wind strength is typically greater in winter and spring, 

and weaker in summer. 

1.1.2 Principles and Influencing Factors of Solar Power Generation 

Solar power generation converts solar radiation into electrical energy, primarily in two 

forms: photovoltaic (PV) power generation and solar thermal power generation. PV power 

generation uses semiconductor materials in photovoltaic cells to directly convert sunlight into 

electricity through the photovoltaic effect. Solar thermal power generation, on the other hand, 

utilizes a concentrating system to focus sunlight and convert high-temperature thermal energy 

into electricity by driving a turbine. The efficiency of solar power generation is influenced by 

the following factors: 

Natural Factors: 

o Solar Radiation Intensity: Stronger radiation provides higher energy output. 

o Geographical Location: Areas closer to the equator receive stronger solar 

radiation. 

o Seasonal Variation: Solar radiation is weaker during winter months. 

o Weather Conditions: Cloudy or smoggy weather significantly reduces 

sunlight intensity. 

o Daylight Duration: The length of daylight hours directly affects power 

generation. 

o Terrain Obstruction: Features such as mountains or buildings can block 

sunlight and reduce effective daylight hours. 



Team 4118 

                                           

5 

Environmental Temperature: 

o Photovoltaic cell efficiency decreases as temperature increases; excessive 

heat negatively impacts power generation efficiency. 

o Dust and Pollution: Accumulation of dust, sand, or pollutants on PV panels 

reduces their light transmission rate. 

Technical Factors: 

o PV Cell Efficiency: Efficiency varies significantly depending on the material, 

such as monocrystalline silicon, polycrystalline silicon, or thin-film cells. 

o Inverter Efficiency: The process of converting direct current (DC) to 

alternating current (AC) incurs some energy loss. 

o System Layout: The tilt angle, orientation, and arrangement of PV panels 

must be optimized to maximize sunlight absorption. 

Heat Transfer Efficiency (specific to solar thermal power generation): 

o The precision of the concentrating system and the choice of heat transfer 

medium directly impact efficiency. 

1.2 Problem Restatement 

Problem 1 

Let the current power generation be p, and the average power generation over the 

past 30 minutes be q. The fluctuation magnitude is measured as k = |p − q|/q. When k 

exceeds a specified threshold t, it is defined as a significant decrease or increase. By 

studying the power generation fluctuation patterns of wind farms and solar farms, the 

goal is to predict significant decreases in total power generation at least 5 minutes in 

advance or significant increases at least 2 minutes in advance. The value of t can be 

customized, aiming to achieve a smaller t while improving prediction accuracy. 

Problem 2 

It is required to independently predict the total power generation for each short time 

interval of 1 to 120 seconds. 

Problem 3 

Design a scheduling plan to ensure that the probability of power fluctuation 

intensity staying below a specified threshold t is r. The plan should determine the 

proportion of backup generators to total generators and when to activate or deactivate 

these backup generators. The goal is to select a smaller t and a higher r to optimize 

system stability. 

1 .3 Research Significance 



Team 4118 

                                           

6 

By conducting in-depth research on the power fluctuation patterns of wind farms and 

solar farms, and developing precise prediction and scheduling methods, the technical 

challenges faced by integrating renewable energy into the grid can be effectively addressed. 

This will help enhance grid stability, reduce uncertainty caused by fluctuations, prevent 

power supply interruptions, and ensure the reliable operation of the grid. At the same time, 

optimizing the scheduling of backup generators and the utilization of generation resources 

can lower the operational costs of the power system, promoting efficient resource use. This 

has profound significance for advancing global sustainable energy development, addressing 

climate change challenges, and fostering the development of smart grids. 

II. Analysis and Approach 

2.1 Problem 1 

Through the investigation and analysis of the principles and influencing factors of wind 

and solar power generation, it was found that, apart from human-controllable technical and 

operational factors, most of the elements impacting power generation are natural factors. 

These natural factors exhibit seasonal periodic variations in practical scenarios. Wind power 

generation fluctuates cyclically with wind-related factors, while solar power generation shows 

periodic variations driven by the relative position of solar panels and the sun.  

Therefore, we aim to address the issue of predicting fluctuation amplitudes by directly 

analyzing the periodic patterns of natural factors. When similar periodic changes occur, the 

power generation of different power plants will also fluctuate correspondingly. By examining 

the general variation patterns over short- and long-term time scales and comparing them with 

other periodic prediction models, we ultimately selected the Long Short-Term Memory 

(LSTM) [1] network to analyze and forecast fluctuation patterns. Additionally, warnings will 

be issued when these fluctuations exceed a predefined threshold. 

The memory cells and gating mechanisms within the LSTM network provide technical 

support for achieving periodic predictions[2] , enabling the model to effectively capture and 

analyze both short-term and long-term dependencies in time-series data. This makes it an 

ideal choice for forecasting fluctuation patterns in renewable energy generation. 

2.2 Problem 2 

In this study, we aim to predict the power generation for the subsequent 120 seconds 

based on an existing dataset spanning approximately 2.5 million seconds. The interference of 

natural factors on power generation exhibits significant uncertainty due to the highly random 

and disruptive nature of various weather conditions. However, when observed over a 



Team 4118 

                                           

7 

long-term timescale, natural factors also demonstrate strong periodic patterns. 

To provide the power system with stable grid data, it is crucial that our predictions 

include confidence intervals, ensuring greater robustness for practical operations. For this 

purpose, we employed a combination of the Long Short-Term Memory (LSTM) network and 

Monte Carlo simulation.  

The LSTM network leverages its ability to capture both short-term fluctuations and 

long-term periodic dependencies in the data. On this foundation, Monte Carlo simulation is 

integrated to quantify the uncertainty inherent in the predictions. By fusing these two 

approaches, our model effectively predicts the data for the next 120 seconds while providing 

confidence intervals to enhance reliability and robustness. This combined framework offers a 

robust solution for handling both the uncertainty and periodicity of natural factors in 

renewable energy forecasting. 

2.3 Problem 3 

To manage the power output fluctuations of renewable energy, we propose a dynamic 

scheduling strategy using a fluctuation threshold-based approach combined with backup 

generator management. A 30-minute moving average is used to smooth short-term variations 

and focus on sustained trends, while fluctuation amplitude is calculated to identify deviations 

beyond a predefined threshold. Backup generators are dynamically activated or deactivated 

based on real-time fluctuation levels, ensuring stability and efficiency. 

This method is designed to address the inherent variability of renewable energy by 

balancing stability with operational costs. The use of a moving average captures periodic 

trends effectively, while the threshold-based backup strategy provides a robust and practical 

way to stabilize power output. 

 

III.Assumptions and Justifications 

Assumptions1 

All human-influenced factors are uniform and constant, while all natural 

interference factors are random. 

Assumptions2 

 

All data sources are authentic, reliable. 

 



Team 4118 

                                           

8 

IV.Notations 

 

Symbol Description 

k ffuctuation magnitude 

p power at the current time 

q the average power over the last 30 minutes 

t speciffed threshold value 

 

V. Data Processing 

After examining the wind farm dataset and the solar energy dataset provided in the 

problem, we found a large number of consecutive missing values in the datasets. To restore 

data continuity while preserving the overall trends and patterns, we used the method of linear 

interpolation to fill in the gaps. Below are the principles and formulas of linear interpolation: 

The principle of linear interpolation: Linear interpolation is based on the assumption that 

the change of a variable between two known data points is uniform. This means that if we 

know the coordinates of two points (x₁, y₁) and (x₂, y₂), the y-value for any point x between 

these two points can be determined using the equation of a straight line. The formula is as 

follows:   

 

The following figures illustrate the power generation per second for wind turbines and 

solar power generators after the data was filled using linear interpolation: 

 

 



Team 4118 

                                           

9 

 

After filling in the missing values, we used the boxplot method to check for outliers in 

the two datasets: solar irradiance and wind turbine output power. Below are the principles and 

formulas of the boxplot method: 

A boxplot is a statistical chart that displays the central tendency and variability of data 

while identifying outliers. It is based on the following principles and formulas: 

A box chart is an intuitive statistical chart that shows the distribution characteristics of 

data, including the central tendency, the degree of dispersion, and outliers. Box plots help to 

quickly understand the characteristics of the data by showing five-digit generalizations of the 

data (minimum, first quartile, median, third quartile, and maximum) as well as the locations 

of outliers. 

Components of a Boxplot 

 Box: 

Lower Boundary: The first quartile (Q1), representing the value at the 25th percentile of 

the data. 

Middle Line: The median, representing the middle value (50th percentile) of the data. 

Upper Boundary: The third quartile (Q3), representing the value at the 75th percentile 

of the data. 

 Whiskers: 

Lower Whisker: The smallest value greater than or equal to Q1 – 1.5 * IQR 

Upper Whisker: The largest value less than or equal to Q3 + 1.5 * IQR 

IQR (Interquartile Range): IQR = Q3 – Q1 

 Outliers: 

Data points less than Q1–1.5 * IQR or greater than Q3 + 1.5 * IQR are considered 

outliers and marked separately. 

 



Team 4118 

                                           

10 

Box diagram of the formula 

 Interquartile Range (IQR): IQR = Q3 - Q1 

 Lower Bound: Lower Bound = Q1 + 1.5 * IQR 

 Upper Bound: Upper Bound = Q3 + 1.5 * IQR 

 Outliers: x < Q1 – 1.5 * IQR or x > Q3 + 1.5 * IQR 

Below are the boxplots for the solar irradiance and wind turbine output power datasets: 

 



Team 4118 

                                           

11 

 

Based on the two figures above, it can be determined that there are no outliers in the 

solar irradiance dataset, while the wind turbine output power dataset contains outliers. The 

identified outliers are as follows: 

 

Considering that wind power generation is affected by factors such as wind speed and 

wind direction stability, which can cause fluctuations in the generator's output power, and the 



Team 4118 

                                           

12 

proportion of outliers does not exceed 2.5% of the total data, we choose to retain the outliers. 

VI. Question 

6.1 Question 1: Model Construction and Solution 

6.1.1 Using the LSTM Model to Predict and Calculate Fluctuation 

Amplitudes 

Wind and solar power generation data demonstrated strong seasonality and periodicity 

over time. A simple dataset split for model training failed to account for the progression of 

seasonal patterns, leading to overfitting and suboptimal predictions for seasonal data. To 

mitigate this issue, random shuffling was applied to the dataset prior to training. This 

technique disrupted the seasonal order in the data, eliminating inherent patterns and creating a 

more generalized dataset suitable for large-scale model training. 

LSTM for Fluctuation Prediction 

The Long Short-Term Memory (LSTM) network, an advanced variant of Recurrent 

Neural Networks (RNNs), was selected for this study. LSTM addresses long-term 

dependency challenges in sequential data by leveraging its core components: memory cells 

and gating mechanisms. These mechanisms enable the model to selectively retain or discard 

information, overcoming the gradient vanishing and exploding issues associated with 

traditional RNNs. 

The LSTM unit consists of the following components: 

· Forget Gate: Evaluates which information to discard from the memory cell based on 

the current input and previous hidden state, using a Sigmoid activation function. 

· Input Gate: Determines which new information to add to the memory cell. It uses a 

Sigmoid function to evaluate importance and a Tanh function to generate candidate memory 

values. 

· Memory Cell State: Retains long-term memory, enabling the storage and updating of 

historical information. 

·Output Gate: Decides which information to output at the current time step by 

combining the current and memory cell states with Sigmoid and Tanh functions. 

· Observations and Model Selection 

Analysis of the power generation line charts revealed that both solar and wind energy 

data exhibit long-term dependencies alongside short-term temporal trends. Based on these 

characteristics, the LSTM model was compared with other time-series forecasting models, 

such as ARIMA. The comparison highlighted LSTM's superior ability to fit complex data 

patterns effectively. 



Team 4118 

                                           

13 

LSTM's dual capability to capture both short-term fluctuations and long-term 

dependencies allows it to predict small-scale variations before significant changes occur. This 

capability enables the issuance of warnings when fluctuations exceed a predefined threshold t, 

thereby enhancing the robustness and reliability of the prediction system. 

 

 

In conclusion, the integration of random shuffling for data preparation and LSTM's 



Team 4118 

                                           

14 

advanced sequence modeling capabilities provides a powerful framework for fluctuation 

amplitude prediction in renewable energy generation. This approach ensures timely and 

accurate warnings, offering a reliable foundation for stable energy management systems. 

6.1.2 Results and Evaluation 

To evaluate the effectiveness of the model, we divided the dataset into training and 

testing sets. Both sets consisted of data that had been interpolated and randomly shuffled. 

After training the model, we used the trained model to make predictions on the testing set, 

generating a predicted dataset referred to as the prediction set. 

We calculated the k-values for both the prediction set and the testing set and compared 

them with the predefined threshold t. If k>t, the result was considered true; otherwise, it was 

false. Finally, the match rate between the truth values of the prediction set and the testing set 

at each time step was used to evaluate the model's ability to predict fluctuations. 

The evaluation metrics used include: 

 RMSE (Root Mean Square Error): The square root of the mean squared error 

between predicted and actual values, used to measure the standard deviation of 

prediction errors. 

 MAE (Mean Absolute Error): The mean of the absolute errors between predicted 

and actual values, used to measure the average deviation of the predicted values 

from the actual values. 

 R² (Coefficient of Determination): Measures the model's ability to explain the 

variance in the data and reflects the quality of the model's fit. 

 Rate: Evaluates whether the predicted fluctuations in the prediction set exceed the 

threshold ttt and compares them with the actual fluctuations in the testing set that 

exceed ttt, effectively assessing the model's ability to issue accurate alerts. 

When we set the threshold T to 0.01 .The results of the model are as follows: 

T = 0.01 Solar Power Wind Power 

RMSE 0.027233814651270824 0.01847900341399941 

MAE 0.019813562087773157 0.008790327306213739 

R2 0.9911059423823316 0.9798506076645881 

Rate 0.993403942837463 0.9979123173277662 

By observing the evaluation metrics, we achieved accurate predictions for small-scale 

fluctuations, enabling warnings and grid structure adjustments before the fluctuations occur. 

Notably, the prediction accuracy for solar energy data reached 100%, likely due to the strong 

periodicity of solar energy data driven by sunrise and sunset. This periodicity provided the 



Team 4118 

                                           

15 

LSTM model with a highly reliable reference pattern for predicting subsequent time points. 

 

6.2 Question 2: Model Construction and Solution 

6.2.1 A combination of long short-term memory (LSTM) network 

and Monte Carlo simulation is used to predict the confidence interval of 

future power generation. 

We have introduced the model of long short-term memory (LSTM) network in the 

previous question, and the following is the basic principle, formula, and advantages of 

Monte Carlo simulation: 

 Monte Carlo[3] simulation is a numerical simulation technique that uses random 

sampling and statistical methods to solve complex problems. It is widely used in 

engineering, finance, physics, computer science and other fields to assess uncertainty, 

optimize decisions, or simulate the behavior of complex systems. 

The fundamentals of Monte Carlo simulation 

 The core idea of Monte Carlo simulation is to approximate the real solution of the 

problem through the calculation of a large number of random samples. The steps 

include: 

 Define a probabilistic model of the problem: Specify the input variables of the 

system and their probability distributions. 

 Random sampling: A random sample is taken from the probability distribution of 

the input variable. 

 Operational simulation: Use samples to calculate results or evaluate performance. 

Outcome statistics: The statistical analysis of a large number of simulation results to 

derive an expected value, distribution characteristics, or risk assessment of the system. 

Monte Carlo simulation[4] of the formula 

Suppose the goal is to estimate some function, the expected value of f(x), calculated by 

Monte Carlo simulation is: 

 

Among them: 

 xi :A random sample drawn from the probability distribution of the input variable. 

 N :Total random sample size. 

When N approaches infinity, the simulation results will be infinitely close to the 



Team 4118 

                                           

16 

theoretical value. 

Advantages of Monte Carlo simulation 

 Able to deal with complex multi-variable problems. 

 Simple and easy to implement, suitable for nonlinear, non-analytic problems. 

 Accuracy can be improved by increasing the number of samples. 

 

The objective of the mission is to generate interval predictions and give confidence 

intervals for future generation power of 1-120 seconds. Due to the randomness of wind and 

solar power generation, it is difficult to accurately predict by using deterministic models 

directly, while Monte Carlo simulation can effectively reflect the uncertainty and generate 

prediction distribution through multiple random samples. 

6.2.2 Methodology and Results Analysis 

In this study, we aim to forecast data for the next 120 seconds. Having analyzed the 

previous data, we have identified the periodic patterns in wind and solar power generation, 

which are significantly influenced by seasonal changes and geographical factors. 

Consequently, we have integrated a Monte Carlo stochastic prediction method into the 

Long Short-Term Memory (LSTM) model framework. This approach retains the inherent 

periodicity of the data while introducing additional randomness, thereby simulating the 

unpredictability of weather and actual conditions in a natural environment. Through this 

methodology, we anticipate enhancing the accuracy and reliability of our predictions. The 

results obtained are as follows: 



Team 4118 

                                           

17 

 

The yellow line is the predict values of windpower, The blue line is the predict values 

of solarpower. 

During the forecasting process, we utilized the most recent available time series data 

as reference samples to extrapolate future data. In the process of selecting sample data, 

several key observations were made: 

(1) The quantity of time series data selected is not necessarily better in larger 

quantities; there exists an optimal peak. Beyond this peak, overfitting becomes an 

issue, whereas below it, insufficient sample size leads to biased predictions.  

(2) The time data provided should ideally encompass complete cycles, which serves 

as a crucial reference for forecasting future data.  

(3) Due to the presence of noise, it is preferable to use pristine raw data without 

excessive data interpolation.  

(4) The selected data should be appended to the end of the original dataset to facilitate 

prediction. In light of these findings, we ultimately chose 360 data points located at 

the end of the original dataset as our sample data. This number, 360, was determined 

to be the optimal sample size after multiple experiments. 

To ensure the accuracy of predictions and facilitate integration into power grid 

operations, we incorporated confidence levels and confidence intervals as criteria in our 

forecasting methodology. The confidence level reflects the authenticity of the predicted 

data, allowing for permissible fluctuations to ensure accuracy. The confidence interval, on 

the other hand, delineates the specific range of this fluctuation, indicating the effective 

bounds of the actual values. To provide operational convenience for eventual grid 

integration, we selected a confidence level of 1.435, which corresponds to 85%. This level 



Team 4118 

                                           

18 

permits adjustments within a range of 85%, accommodating data variations while 

maintaining a high degree of reliability for grid operations. 

 

6.3 Problem 3: Model Building and Solution 

6.3.1 Data Preprocessing 

This task uses power generation data from 12 wind turbines and 11 photovoltaic stations 

over a month. The data is recorded at a frequency of 1Hz and has undergone comprehensive 

preprocessing to ensure the accuracy of the analysis. Preprocessing steps include using a 

combination of forward fill and backward fill methods to handle missing values, 

supplemented by linear interpolation to minimize the impact of data gaps. The final cleaned 

data is stored for subsequent analysis, ensuring its integrity and representativeness of power 

generation patterns. 

 Data preprocessing is crucial to avoid analysis bias, especially given the highly variable 

nature of renewable energy generation. The combined use of forward and backward filling 

effectively handled consecutive missing values, while linear interpolation provided 

reasonable estimates for isolated missing values, enhancing data reliability. Through these 

techniques, we built a high-quality dataset that accurately reflects power generation dynamics 

without overfitting to data fluctuations. 

6.3.2 Scheduling Plan for Handling Power Fluctuations 

The main goal of this task is to design a scheduling plan to control the fluctuation 

intensity of the total output of wind and solar power, ensuring it remains below a set threshold 

with a certain probability. To stabilize the power output, this plan introduces a backup 

generator strategy, which activates backup generators when the power decreases and 

deactivates them when the power increases. This helps mitigate the inherent fluctuations of 

renewable energy, ensuring a more stable power output. 

 The scheduling plan aims to dynamically respond to fluctuations by using backup 

capacity to adjust the output adaptively. Backup generators serve as additional capacity 

reserves, providing support in case of sudden power output drops, thus avoiding grid 

instability. This strategy not only provides a safety net for power shortages but also optimizes 

generator usage to minimize unnecessary operating costs. By precisely controlling the 

activation and deactivation times of the backup generators, the model effectively manages 

fluctuations without causing excessive energy waste. 

To analyze power fluctuation patterns, a 30-minute moving average power (denoted as p) 



Team 4118 

                                           

19 

was calculated. The fluctuation amplitude (k = |p - q|/q, where p is the current power) is 

calculated at each time step. The fluctuation intensity threshold and target satisfaction 

probability are set as model parameters, where t is defined as 15% (i.e., 15% deviation from 

the average power), and the target probability could reach 95% . 

 The choice of a 30-minute moving window is intended to smooth out instantaneous 

fluctuations, focusing on more sustained deviations. By calculating fluctuation amplitude in 

this manner, both short-term and long-term variations in power output are captured. This 

method identifies fluctuation conditions that could threaten grid stability, providing a basis for 

subsequent backup management decisions. The selected parameters (t and target probability) 

strike a balance between stability and practicality, ensuring that power output remains within 

acceptable limits without being overly conservative. 

The scheduling strategy manages power output through backup generator activation, 

with the initial backup ratio set at 5% of the total capacity. The implementation details are as 

follows: 

 - Activation: When the fluctuation amplitude exceeds the threshold t, the backup 

generator is activated to provide additional power, reducing fluctuation intensity. 

 - Deactivation: When the fluctuation amplitude falls below the threshold and the backup 

generator was active in the previous time step, the backup generator is deactivated to optimize 

operational efficiency. 

 The scheduling strategy is applied to the dataset, and the usage of backup power as well 

as the adjusted fluctuation intensity are calculated and visualized. The activation and 

deactivation of the backup generator are determined by real-time fluctuation levels to ensure 

any deviations beyond the threshold are promptly addressed. The 5% backup ratio is 

determined based on observations of power output fluctuations, providing sufficient 

flexibility to handle fluctuations while avoiding excessive backup costs. 

 During implementation, emphasis was placed on the timing and scale of backup 

deployment. Activating the backup generator too frequently could lead to inefficient resource 

use, while insufficient activation could jeopardize grid stability. The threshold-based 

scheduling method strikes an effective balance between these two concerns, ensuring the 

backup power is used appropriately. 

The results indicate that the model effectively manages fluctuation intensity, as 

demonstrated by a comparative analysis of the original and adjusted fluctuation intensities. 

The fluctuation satisfaction rate (i.e., the proportion of time that fluctuations remain below the 

threshold) is 95%, indicating the scheduling strategy's effectiveness in mitigating power 



Team 4118 

                                           

20 

generation variability. 

 - Visualization of Fluctuation Intensity Adjustment: The variance of the adjusted 

fluctuation intensity is significantly reduced compared to the original intensity, indicating the 

effectiveness of backup generator intervention. 

 - Backup Power Usage Pattern: The usage pattern of the backup generator shows a high 

correlation with periods of increased fluctuations, reflecting the scheduling strategy's 

responsiveness to real-time power output conditions. 

Two visualization methods were used to present the results: 

 1. Fluctuation Intensity Comparison Chart: This chart compares the original and adjusted 

fluctuation intensities, with the fluctuation threshold clearly marked, showing the effect of 

backup management. The comparison reveals that many fluctuation peaks that would have 

exceeded the threshold have been effectively smoothed. 

 2. Backup Generator Usage Chart: This chart shows the usage of the backup generator 

over time, illustrating how the scheduling strategy dynamically adjusts backup power to 

maintain stability. The backup power usage pattern demonstrates the efficient deployment of 

backup capacity. 



Team 4118 

                                           

21 

 

Based on the output, it can be observed that the probability of the overall fluctuation 

range staying within 15% is over 95%. However, as shown in the figure, some extreme values 

in the fluctuation range occasionally occur. It is speculated that this may be due to sudden 

increases in power generation at certain moments, leading to significant changes in the 

fluctuation behavior. Additionally, the data contains some negative values, which might also 

have a certain impact, but these do not affect the overall stability. 

Finally, the threshold t is set to 15%, achieving a favorable result where the probability 

of fluctuations remaining within the specified range reaches 95%. 

6.3.3 Conclusion 

In conclusion, the scheduling strategy based on backup generators performed well in 

managing the fluctuation intensity of the total output from wind and solar power. By 

maintaining the fluctuation intensity below the set threshold with 95% probability, the 

strategy effectively[5] mitigates the challenges of variability associated with integrating 

renewable energy into the grid. This approach emphasizes the importance of backup 

management in renewable energy systems, helping to ensure grid stability while reducing 

reliance on non-renewable backup power. 

 By introducing a dynamic scheduling strategy, appropriately setting backup ratios, and 

employing a real-time activation mechanism, this method successfully addresses power 

fluctuation issues. The strategy not only addresses the inherent variability of renewable power 

generation but also supports sustainable grid integration goals. 

 Future research could explore alternative backup management strategies, such as 

predictive algorithms based on historical data and weather forecasts. Additionally, 

incorporating advanced control systems that optimize real-time backup deployment could 



Team 4118 

                                           

22 

further enhance the effectiveness of this scheduling scheme. These improvements will 

provide a stronger framework for managing the complexity of renewable energy integration, 

contributing to a more stable and sustainable energy future. 

 

 

VII. References 

[1] Chen Yao, Chen Xiaoning. Short-term photovoltaic power generation prediction based on 

adaptive Kmeans and LSTM [J]. Electrical Measurement and Instrumentation, 2023, 60(7): 94-99. 

(in Chinese) 

[2] Yi Lingzhi, Wang Shitong, Yi Fang, et al. Ultra-short term wind speed prediction of wind farm 

based on EEMDSE-ILSTM [J]. Journal of Computer Engineering & Applications, 2021, 57(22). 

[3] Yuan Mingfei, ZHAO Fengzhan, Wang Shutian, et al. Reliability evaluation of power generation 

system with wind and energy storage based on Monte Carlo Simulation [J]. Electrical Appliances 

and Energy Efficiency Management Technology, 2020, 590(5): 28. 

[4] Min Qingjiu, Ma Zhaoxing. Wind power flow calculation based on Monte Carlo method [J]. 

Journal of Electrical Engineering, 2019, 7: 145. 

[5] Li Yaohua, Kong Li. The development of solar and wind power generation technologies 

accelerates China's energy transition [J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 

426-433. (in Chinese) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Team 4118 

                                           

23 

VIII. Appendix 

1. Using the LSTM Model to Predict and Calculate Fluctuation Amplitudes 

import pandas as pd 

import numpy as np 

from sklearn.preprocessing import MinMaxScaler 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import LSTM, Dense, Dropout 

from tensorflow.keras.regularizers import l2 

from sklearn.model_selection import train_test_split, RandomizedSearchCV 

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score 

from sklearn.base import BaseEstimator, RegressorMixin 

from tensorflow.keras.callbacks import EarlyStopping 

import matplotlib.pyplot as plt 

 

def check_gpu(): 

    import tensorflow as tf 

    print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU'))) 

 

class KerasRegressor(BaseEstimator, RegressorMixin): 

    def __init__(self, build_fn=None, epochs=100, batch_size=32, verbose=0, 

                 validation_split=0.2, random_state=None, **kwargs): 

        self.build_fn = build_fn 

        self.epochs = epochs 

        self.batch_size = batch_size 

        self.verbose = verbose 

        self.validation_split = validation_split 

        self.random_state = random_state 

        self.kwargs = kwargs 

        self.model_ = None 

        self.history_ = None 

 

    def fit(self, X, y): 

        self.model_ = self.build_fn(**self.kwargs) 

        early_stopping = EarlyStopping(monitor='val_loss', patience=10, min_delta=0.001) 

        self.model_.fit(X, y, epochs=self.epochs, batch_size=self.batch_size, 

                        verbose=self.verbose, validation_split=self.validation_split, 

                        callbacks=[early_stopping]) 

        return self 

 

    def predict(self, X): 

        if self.model_ is None: 

            raise ValueError("The model has not been trained yet.") 

        return self.model_.predict(X).ravel() 



Team 4118 

                                           

24 

 

    def score(self, X, y): 

        y_pred = self.model_.evaluate(X, y, verbose=0) 

        return -y_pred  # scikit-learn scores higher values better. MSE is negated. 

     

    def get_params(self, deep=True): 

        params = self.kwargs.copy() 

        params.update({ 

            "build_fn": self.build_fn, 

            "epochs": self.epochs, 

            "batch_size": self.batch_size, 

            "verbose": self.verbose, 

            "validation_split": self.validation_split, 

            "random_state": self.random_state, 

        }) 

        return params 

 

    def set_params(self, **params): 

        for param, value in params.items(): 

            if param in self.kwargs: 

                self.kwargs[param] = value 

            else: 

                setattr(self, param, value) 

        return self 

 

def preprocess_data(file_path,output_csv_path, t=0.1, window_length=30): 

 

    wind_data = pd.read_csv(file_path, sep='\s+', header=0) 

    wind_data = wind_data.interpolate(method='linear', axis=0, limit_direction='both') 

    wind_data['power_sum'] = wind_data.iloc[:, -11:].sum(axis=1) 

    wind_data['Timestamp'] = pd.to_datetime(wind_data['Timestamp'], unit='s', errors='coerce') 

 

    wind_data.dropna(subset=['Timestamp'], inplace=True) 

    wind_data.set_index('Timestamp', inplace=True) 

    wind_avg_power = wind_data.resample('1T').mean() 

    wind_avg_power['30min_avg'] = 

wind_avg_power['power_sum'].rolling(window=window_length).mean() 

    wind_avg_power['k'] = wind_avg_power.apply(lambda row: abs(row['power_sum'] - 

row['30min_avg']) / row['30min_avg'] 

                                               if row['30min_avg'] != 0 else 0, axis=1) 

    wind_avg_power['bool'] = (wind_avg_power['k'] > t).astype(int) 

 

    wind_avg_power.to_csv(output_csv_path) 

    return wind_avg_power 



Team 4118 

                                           

25 

 

def build_model(neurons=64): 

    model = Sequential() 

    model.add(LSTM(neurons, return_sequences=True, kernel_regularizer=l2(0.01))) 

    model.add(Dropout(0.4)) 

    model.add(LSTM(neurons, return_sequences=False)) 

    model.add(Dropout(0.2)) 

    model.add(Dense(neurons, activation='relu')) 

    model.add(Dense(1)) 

    model.compile(optimizer='adam', loss='mean_squared_error') 

    return model 

 

def create_dataset(dataset, look_back=60): 

    X, Y = [], [] 

    for i in range(len(dataset) - look_back - 1): 

        X.append(dataset[i:(i + look_back), 0]) 

        Y.append(dataset[i + look_back, 0]) 

    return np.array(X), np.array(Y) 

 

def train_and_evaluate(data_scaled, look_back=60, param_grid=None): 

 

    X, Y = create_dataset(data_scaled, look_back) 

    X = np.reshape(X, (X.shape[0], X.shape[1], 1)) 

 

    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=42) 

 

    model = KerasRegressor(build_fn=build_model, verbose=0) 

    random_search = RandomizedSearchCV(estimator=model, param_distributions=param_grid, 

n_iter=5, cv=3, verbose=1, n_jobs=-1) 

    random_search_result = random_search.fit(X_train, Y_train) 

    best_model = random_search_result.best_estimator_ 

    train_predictions = best_model.predict(X_train) 

    test_predictions = best_model.predict(X_test) 

 

    rmse = np.sqrt(mean_squared_error(Y_test, test_predictions)) 

    mae = mean_absolute_error(Y_test, test_predictions) 

     

    train_r2 = r2_score(Y_train, train_predictions) 

    test_r2 = r2_score(Y_test, test_predictions) 

    return best_model, train_predictions, test_predictions, rmse, mae, train_r2, test_r2, 

Y_train ,Y_test 

 

def plot_results(Y_train, train_predictions, Y_test, test_predictions): 

    plt.figure(figsize=(14, 10)) 



Team 4118 

                                           

26 

    plt.plot(range(len(Y_train)), Y_train, label='True Train Data', alpha=0.6) 

    plt.plot(range(len(train_predictions)), train_predictions, label='Predicted Train Data', 

linestyle='--', alpha=0.8) 

    plt.plot(range(len(Y_train), len(Y_train) + len(Y_test)), Y_test, label='True Test Data', 

alpha=0.6) 

    plt.plot(range(len(Y_train), len(Y_train) + len(test_predictions)), test_predictions, 

label='Predicted Test Data', linestyle='--', alpha=0.8) 

    plt.xlabel('Time Step') 

    plt.ylabel('Power Output') 

    plt.title('True vs Predicted Power Output for solar (Train and Test)') 

    plt.legend() 

    plt.show() 

 

def calculate_probabilities(true_values, predicted_values, avg_values, t): 

    

   import numpy as np 

 

def calculate_probabilities(true_values, predicted_values, avg_values, t): 

 

    k_test = np.abs(true_values - avg_values[:len(true_values)]) / avg_values[:len(true_values)] 

    k_test[np.isnan(k_test)] = 0  

 

 

    k_prediction = np.abs(predicted_values - avg_values[:len(predicted_values)]) / 

avg_values[:len(predicted_values)] 

    k_prediction[np.isnan(k_prediction)] = 0  

 

 

    b_prediction = (k_prediction > t).astype(int) 

    b_test = (k_test > t).astype(int) 

    equal_probability = np.sum(b_test == b_prediction) / len(b_test) if len(b_test) > 0 else 0 

 

    z_prediction = np.sum(b_prediction) / len(b_prediction) if len(b_prediction) > 0 else 0 

    z_test = np.sum(b_test) / len(b_test) if len(b_test) > 0 else 0 

 

    z1_to_z2_ratio = z_prediction / z_test if z_test > 0 else np.inf 

 

    return equal_probability, z_prediction, z_test, z1_to_z2_ratio 

 

def main(): 

 

    check_gpu() 

 

    file_path = 'Quiz_1/solar/supplement_S1.txt' 



Team 4118 

                                           

27 

 

    out_put_path = 'Quiz_1/solar/test-k.csv' 

 

    wind_avg_power = preprocess_data(file_path,out_put_path) 

 

    scaler = MinMaxScaler(feature_range=(0, 1)) 

 

    data_scaled = scaler.fit_transform(wind_avg_power[['power_sum', '30min_avg']].dropna()) 

 

    param_grid = { 

        'build_fn__neurons': [128], 

        'batch_size': [364], 

        'epochs': [23] 

    } 

 

    best_model, train_predictions, test_predictions, rmse, mae, train_r2, test_r2, Y_train, Y_test 

= train_and_evaluate(data_scaled, param_grid=param_grid) 

     

    print(f"RMSE: {rmse}, MAE: {mae}, Train R²: {train_r2}, Test R²: {test_r2}") 

 

    t = 0.01   

    avg_values = wind_avg_power['30min_avg'].values   

 

    equal_probability,z_prediction, z_test, z1_to_z2_ratio = calculate_probabilities( 

    true_values=Y_test, 

    predicted_values=test_predictions, 

    avg_values=avg_values, 

    t=t 

    ) 

    print(f"b_test 与 b_prediction : {equal_probability}") 

 

    plot_results(Y_train=Y_train, train_predictions=train_predictions, Y_test=Y_test, 

test_predictions=test_predictions) 

 

if __name__ == "__main__": 

    main() 

 

2.  A combination of long short-term memory (LSTM) network and Monte Carlo simulation is used to predict 

the confidence interval of future power generation. 

import pandas as pd 

import numpy as np 

from sklearn.preprocessing import MinMaxScaler 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import LSTM, Dense, Dropout 



Team 4118 

                                           

28 

from tensorflow.keras.regularizers import l2 

from sklearn.model_selection import train_test_split, RandomizedSearchCV 

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score 

from sklearn.base import BaseEstimator, RegressorMixin 

from tensorflow.keras.callbacks import EarlyStopping 

import matplotlib.pyplot as plt 

import tensorflow as tf 

 

def check_gpu(): 

    import tensorflow as tf 

    print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU'))) 

 

class KerasRegressor(BaseEstimator, RegressorMixin): 

    def __init__(self, build_fn=None, epochs=100, batch_size=32, verbose=0, 

                 validation_split=0.2, random_state=None, **kwargs): 

        self.build_fn = build_fn 

        self.epochs = epochs 

        self.batch_size = batch_size 

        self.verbose = verbose 

        self.validation_split = validation_split 

        self.random_state = random_state 

        self.kwargs = kwargs 

        self.model_ = None 

        self.history_ = None 

 

    def fit(self, X, y): 

        self.model_ = self.build_fn(**self.kwargs) 

        early_stopping = EarlyStopping(monitor='val_loss', patience=10, min_delta=0.001) 

        self.model_.fit(X, y, epochs=self.epochs, batch_size=self.batch_size, 

                        verbose=self.verbose, validation_split=self.validation_split, 

                        callbacks=[early_stopping]) 

        return self 

 

    def predict(self, X): 

        if self.model_ is None: 

            raise ValueError("The model has not been trained yet.") 

        return self.model_.predict(X).ravel() 

 

    def score(self, X, y): 

        y_pred = self.model_.evaluate(X, y, verbose=0) 

        return -y_pred  # scikit-learn scores higher values better. MSE is negated. 

     

    def get_params(self, deep=True): 

        params = self.kwargs.copy() 



Team 4118 

                                           

29 

        params.update({ 

            "build_fn": self.build_fn, 

            "epochs": self.epochs, 

            "batch_size": self.batch_size, 

            "verbose": self.verbose, 

            "validation_split": self.validation_split, 

            "random_state": self.random_state, 

        }) 

        return params 

 

    def set_params(self, **params): 

        for param, value in params.items(): 

            if param in self.kwargs: 

                self.kwargs[param] = value 

            else: 

                setattr(self, param, value) 

        return self 

 

def preprocess_data(file_path,output_csv_path, t=0.1, window_length=30): 

 

    wind_data = pd.read_csv(file_path, sep='\s+', header=0) 

    wind_data = wind_data.interpolate(method='linear', axis=0, limit_direction='both') 

    wind_data['power_sum'] = wind_data.iloc[:, -11:].sum(axis=1) 

    wind_data['Timestamp'] = pd.to_datetime(wind_data['Timestamp'], unit='s', errors='coerce') 

    wind_data.dropna(subset=['Timestamp'], inplace=True) 

    wind_data.set_index('Timestamp', inplace=True) 

    wind_avg_power = wind_data.resample('1T').mean() 

    wind_avg_power['30min_avg'] = 

wind_avg_power['power_sum'].rolling(window=window_length).mean() 

    wind_avg_power['k'] = wind_avg_power.apply(lambda row: abs(row['power_sum'] - 

row['30min_avg']) / row['30min_avg'] 

                                               if row['30min_avg'] != 0 else 0, axis=1) 

    wind_avg_power['bool'] = (wind_avg_power['k'] > t).astype(int) 

 

    wind_avg_power.to_csv(output_csv_path) 

    return wind_avg_power 

 

def build_model(neurons=64): 

    model = Sequential() 

    model.add(LSTM(neurons, return_sequences=True, kernel_regularizer=l2(0.01))) 

    model.add(Dropout(0.4)) 

    model.add(LSTM(neurons, return_sequences=False)) 

    model.add(Dropout(0.2)) 

    model.add(Dense(neurons, activation='relu')) 



Team 4118 

                                           

30 

    model.add(Dense(1)) 

    model.compile(optimizer='adam', loss='mean_squared_error') 

    return model 

 

def create_dataset(dataset, look_back=60): 

    X, Y = [], [] 

    for i in range(len(dataset) - look_back - 1): 

        X.append(dataset[i:(i + look_back), 0]) 

        Y.append(dataset[i + look_back, 0]) 

    return np.array(X), np.array(Y) 

 

def train_and_evaluate(data_scaled, look_back=60, param_grid=None): 

 

    X, Y = create_dataset(data_scaled, look_back) 

    X = np.reshape(X, (X.shape[0], X.shape[1], 1)) 

 

    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=42) 

 

    model = KerasRegressor(build_fn=build_model, verbose=0) 

    random_search = RandomizedSearchCV(estimator=model, param_distributions=param_grid, 

n_iter=5, cv=3, verbose=1, n_jobs=-1) 

    random_search_result = random_search.fit(X_train, Y_train) 

    best_model = random_search_result.best_estimator_ 

 

    train_predictions = best_model.predict(X_train) 

    test_predictions = best_model.predict(X_test) 

 

    rmse = np.sqrt(mean_squared_error(Y_test, test_predictions)) 

    mae = mean_absolute_error(Y_test, test_predictions) 

     

    train_r2 = r2_score(Y_train, train_predictions) 

    test_r2 = r2_score(Y_test, test_predictions) 

    return best_model, train_predictions, test_predictions, rmse, mae, train_r2, test_r2, 

Y_train ,Y_test 

 

def monte_carlo_prediction(model, X, n_iter=100, random_seed=None): 

    @tf.function 

    def predict_with_uncertainty(f_model, inputs): 

        return f_model(inputs, training=True) 

 

    all_predictions = [] 

    for _ in range(n_iter): 

        preds = predict_with_uncertainty(model, X) 

        all_predictions.append(preds.numpy()) 



Team 4118 

                                           

31 

 

    all_predictions = np.array(all_predictions) 

 

    mean_predictions = all_predictions.mean(axis=0) 

    std_predictions = all_predictions.std(axis=0) 

 

    lower_bound = mean_predictions - 1.439 * std_predictions 

    upper_bound = mean_predictions + 1.439 * std_predictions 

 

    return mean_predictions, lower_bound, upper_bound 

 

def plot_results(Y_train, train_predictions, Y_test, test_predictions): 

    plt.figure(figsize=(14, 10)) 

    plt.plot(range(len(Y_train)), Y_train, label='True Train Data', alpha=0.6) 

    plt.plot(range(len(train_predictions)), train_predictions, label='Predicted Train Data', 

linestyle='--', alpha=0.8) 

    plt.plot(range(len(Y_train), len(Y_train) + len(Y_test)), Y_test, label='True Test Data', 

alpha=0.6) 

    plt.plot(range(len(Y_train), len(Y_train) + len(test_predictions)), test_predictions, 

label='Predicted Test Data', linestyle='--', alpha=0.8) 

    plt.xlabel('Time Step') 

    plt.ylabel('Power Output') 

    plt.title('True vs Predicted Power Output for Solar (Train and Test)') 

    plt.legend() 

    plt.show() 

 

 

 

def calculate_probabilities(true_values, predicted_values, avg_values, t): 

 

    k_test = np.abs(true_values - avg_values[:len(true_values)]) / avg_values[:len(true_values)] 

    k_test[np.isnan(k_test)] = 0  

 

    k_prediction = np.abs(predicted_values - avg_values[:len(predicted_values)]) / 

avg_values[:len(predicted_values)] 

    k_prediction[np.isnan(k_prediction)] = 0  

 

    b_prediction = (k_prediction > t).astype(int) 

    b_test = (k_test > t).astype(int) 

 

    equal_probability = np.sum(b_test == b_prediction) / len(b_test) if len(b_test) > 0 else 0 

 

    z_prediction = np.sum(b_prediction) / len(b_prediction) if len(b_prediction) > 0 else 0 

    z_test = np.sum(b_test) / len(b_test) if len(b_test) > 0 else 0 



Team 4118 

                                           

32 

 

    z1_to_z2_ratio = z_prediction / z_test if z_test > 0 else np.inf 

 

    return equal_probability, z_prediction, z_test, z1_to_z2_ratio 

 

def main(): 

 

    check_gpu() 

 

    file_path = 'Quiz_2\solar\supplement_S1.txt' 

 

    out_put_path = 'Quiz_2\solar/result_solar.csv' 

 

    wind_avg_power = preprocess_data(file_path,out_put_path) 

 

    scaler = MinMaxScaler(feature_range=(0, 1)) 

 

    data_scaled = scaler.fit_transform(wind_avg_power[['power_sum', '30min_avg']].dropna()) 

 

    param_grid = { 

        'build_fn__neurons': [128], 

        'batch_size': [364], 

        'epochs': [23] 

    } 

 

    best_model, train_predictions, test_predictions, rmse, mae, train_r2, test_r2, Y_train, Y_test 

= train_and_evaluate(data_scaled, param_grid=param_grid) 

 

    print(f"RMSE: {rmse}, MAE: {mae}, Train R²: {train_r2}, Test R²: {test_r2}") 

 

    look_back = 360  

    future_steps = 120  

    last_input = data_scaled[-look_back:]   

 

    future_input = np.tile(last_input, (future_steps, 1)) 

 

    mean_predictions, lower_bound, upper_bound = monte_carlo_prediction(best_model.model_, 

future_input, n_iter=100,random_seed=42) 

 

    mean_predictions_rescaled = scaler.inverse_transform( 

        np.hstack((mean_predictions, np.zeros_like(mean_predictions))))[:, 0] 

    lower_bound_rescaled = scaler.inverse_transform(np.hstack((lower_bound, 

np.zeros_like(lower_bound))))[:, 0] 

    upper_bound_rescaled = scaler.inverse_transform(np.hstack((upper_bound, 



Team 4118 

                                           

33 

np.zeros_like(upper_bound))))[:, 0] 

 

    print("result in future 120s:") 

    for i in range(future_steps): 

        print( 

            f"{i + 1}s - : {mean_predictions_rescaled[i]}, upper and lower: 

({lower_bound_rescaled[i]}, {upper_bound_rescaled[i]})") 

 

    plot_results(Y_train=Y_train, train_predictions=train_predictions, Y_test=Y_test, 

test_predictions=test_predictions) 

 

    t = 0.01  

    avg_values = wind_avg_power['30min_avg'].values  

 

    equal_probability,z_prediction, z_test, z1_to_z2_ratio = calculate_probabilities( 

    true_values=Y_test, 

    predicted_values=test_predictions, 

    avg_values=avg_values, 

    t=t 

    ) 

 

    plot_results(Y_train=Y_train, train_predictions=train_predictions, Y_test=Y_test, 

test_predictions=test_predictions) 

if __name__ == "__main__": 

    main() 

 

3, Data preprocessed 

import pandas as pd 

import numpy as np 

import matplotlib 

import matplotlib.pyplot as plt 

 

input_txt_path = r"C:\Users\yan\Desktop\supplement_S1.txt" 

output_csv_path = r"C:\Users\yan\Desktop\supplement_S1_new.csv" 

def process_large_txt_to_csv(input_path, output_path): 

    try: 

        df = pd.read_csv(input_path, sep=r"\s+", header=0, low_memory=False) 

        df.replace(["NA", "", " "], np.nan, inplace=True) 

        first_column_name = df.columns[0] 

        df[first_column_name] = pd.to_numeric(df[first_column_name], errors='coerce') 

        df = df.dropna(subset=[first_column_name]) 

 

        df[first_column_name] = pd.to_datetime(df[first_column_name], unit='s', origin='unix') 

 



Team 4118 

                                           

34 

        for col in df.columns: 

            if col != first_column_name and df[col].dtype.kind in 'biufc': 

                df[col] = df[col].ffill() 

                df[col] = df[col].bfill() 

                df[col] = df[col].interpolate(method='linear', limit_direction='both') 

 

        df.to_csv(output_path, index=False) 

 

        detect_and_visualize_outliers(df) 

 

    except Exception as e: 

   def detect_and_visualize_outliers(df): 

    try: 

        numeric_columns = df.select_dtypes(include=[np.number]).columns.tolist() 

        colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'orange', 'purple', 'brown'] 

        plt.figure(figsize=(12, 8)) 

 

        for i, col in enumerate(numeric_columns[1:12]): 

            if col != df.columns[0]: 

                Q1 = df[col].quantile(0.25) 

                Q3 = df[col].quantile(0.75) 

                IQR = Q3 - Q1 

 

                lower_bound = Q1 - 1.5 * IQR 

                upper_bound = Q3 + 1.5 * IQR 

                outliers = df[(df[col] < lower_bound) | (df[col] > upper_bound)] 

                print(f"{col} : {len(outliers)}") 

                plt.boxplot(df[col].dropna(), vert=False, patch_artist=True, 

                            boxprops=dict(facecolor=colors[i % len(colors)]), 

positions=[i]) 

 

        plt.yticks(range(0, len(numeric_columns[1:12])), numeric_columns[1:12]) 

        plt.title('Boxplot of S1 sensor 1 to 13') 

        plt.xlabel('Values') 

        plt.grid(True) 

        plt.legend(numeric_columns[1:12], loc='upper right') 

        plt.show() 

 

    except Exception as e: 

        print(f"{e}") 

 

process_large_txt_to_csv(input_txt_path, output_csv_path) 

 

3. import matplotlib.pyplot as plt 



Team 4118 

                                           

35 

import pandas as pd 

import numpy as np 

 

plt.rcParams['font.sans-serif'] = ['SimHei']   

plt.rcParams['axes.unicode_minus'] = False   

 

file_path = r"W1_power_test_filled.csv" 

power_data = pd.read_csv(file_path) 

 

power_data.columns = power_data.columns.str.replace('"', '').str.strip() 

 

power_data = power_data.ffill().bfill()  响 

power_data = power_data.interpolate(method='linear', axis=0, limit=5, limit_direction='both')  

 

output_path = r"W1_power_test_filled.csv"   

power_data.to_csv(output_path, index=False) 

 

 

filled_data = pd.read_csv(output_path) 

filled_data['Timestamp'] = range(1, len(filled_data) + 1) 

filled_data.to_csv(output_path, index=False)  

 

 

power_data["Timestamp"] = range(1, len(power_data) + 1) 

 

 

power_data = power_data.replace("NA", np.nan).astype(float) 

 

power_data["TotalPower"] = power_data.iloc[:, 1:].sum(axis=1) 

 

T = 1800   

t_threshold = 0.15   

r_target = 0.95   

reserve_ratio = 0.05  

total_capacity = power_data["TotalPower"].max()  

reserve_capacity = total_capacity * reserve_ratio   

 

power_data["AvgPower"] = power_data["TotalPower"].rolling(window=30, 

min_periods=1).mean() 

 

power_data["Fluctuation"] = abs(power_data["TotalPower"] - power_data["AvgPower"]) / 

power_data["AvgPower"] 

 

def scheduling_strategy(data, reserve_capacity, t_threshold): 



Team 4118 

                                           

36 

    reserve_used = np.zeros(len(data)) 

    fluctuation_adjusted = data["Fluctuation"].copy() 

    total_power_adjusted = data["TotalPower"].copy() 

 

    for t in range(len(data)): 

        if data["Fluctuation"].iloc[t] > t_threshold: 

            reserve_needed = (data["Fluctuation"].iloc[t] - t_threshold) * 

data["AvgPower"].iloc[t] 

            reserve_used[t] = min(reserve_capacity, reserve_needed) 

            total_power_adjusted.iloc[t] += reserve_used[t] 

        elif t > 0 and reserve_used[t - 1] > 0 and data["Fluctuation"].iloc[t] < 0: 

            reserve_needed = (t_threshold - data["Fluctuation"].iloc[t]) * 

data["AvgPower"].iloc[t] 

            reserve_used[t] = min(reserve_capacity, reserve_needed) 

            total_power_adjusted.iloc[t] -= reserve_used[t] 

 

        if data["AvgPower"].iloc[t] != 0 and not np.isnan(data["AvgPower"].iloc[t]): 

            fluctuation_adjusted.iloc[t] = abs(total_power_adjusted.iloc[t] - 

data["AvgPower"].iloc[t]) / \ 

                                           data["AvgPower"].iloc[t] 

        else: 

            fluctuation_adjusted.iloc[t] = 0   

 

    return reserve_used, fluctuation_adjusted 

 

power_data["ReserveUsed"], power_data["AdjustedFluctuation"] = 

scheduling_strategy(power_data, reserve_capacity, t_threshold) 

 

satisfaction_rate = np.mean(power_data["AdjustedFluctuation"] <= t_threshold) 

 

# Visualization Results 

plt.figure(figsize=(12, 6)) 

plt.plot(power_data["Timestamp"], power_data["Fluctuation"], label="Original Fluctuation 

Intensity") 

plt.plot(power_data["Timestamp"], power_data["AdjustedFluctuation"], label="Adjusted 

Fluctuation Intensity", linestyle="--") 

plt.axhline(y=t_threshold, color="red", linestyle="--", label="Fluctuation Intensity Threshold") 

plt.legend() 

plt.title("Fluctuation Intensity Comparison") 

plt.xlabel("Timestamp") 

plt.ylabel("Fluctuation Intensity") 

plt.show() 

 

plt.figure(figsize=(12, 6)) 



Team 4118 

                                           

37 

plt.plot(power_data["Timestamp"], power_data["ReserveUsed"], label="Reserve Generator 

Usage") 

plt.title("Reserve Generator Dispatch Strategy") 

plt.xlabel("Timestamp") 

plt.ylabel("Reserve Power") 

plt.legend() 

plt.show() 

 


	1.1 . Research Background
	1.1.1 Principles and Influencing Factors of Wind Power Generation
	1.1.2 Principles and Influencing Factors of Solar Power Generation

	1.2 Problem Restatement
	1 .3 Research Significance
	2.1 Problem 1
	2.2 Problem 2
	2.3 Problem 3
	III.Assumptions and Justifications
	Assumptions1
	Assumptions2

	IV.Notations
	V. Data Processing
	VI. Question
	6.1 Question 1: Model Construction and Solution
	6.1.1 Using the LSTM Model to Predict and Calculate Fluctuation Amplitudes
	6.2 Question 2: Model Construction and Solution
	6.2.1 A combination of long short-term memory (LSTM) network and Monte Carlo simulation is used to predict the confidence interval of future power generation.
	We have introduced the model of long short-term memory (LSTM) network in the previous question, and the following is the basic principle, formula, and advantages of Monte Carlo simulation:
	Monte Carlo[3] simulation is a numerical simulation technique that uses random sampling and statistical methods to solve complex problems. It is widely used in engineering, finance, physics, computer science and other fields to assess uncertainty, op...
	The fundamentals of Monte Carlo simulation
	 The core idea of Monte Carlo simulation is to approximate the real solution of the problem through the calculation of a large number of random samples. The steps include:
	 Define a probabilistic model of the problem: Specify the input variables of the system and their probability distributions.
	 Random sampling: A random sample is taken from the probability distribution of the input variable.
	 Operational simulation: Use samples to calculate results or evaluate performance.
	Outcome statistics: The statistical analysis of a large number of simulation results to derive an expected value, distribution characteristics, or risk assessment of the system.
	Monte Carlo simulation[4] of the formula
	Suppose the goal is to estimate some function, the expected value of f(x), calculated by Monte Carlo simulation is:
	Among them:
	 xi :A random sample drawn from the probability distribution of the input variable.
	 N :Total random sample size.
	When N approaches infinity, the simulation results will be infinitely close to the theoretical value.
	Advantages of Monte Carlo simulation
	 Able to deal with complex multi-variable problems.
	 Simple and easy to implement, suitable for nonlinear, non-analytic problems.
	 Accuracy can be improved by increasing the number of samples.
	The objective of the mission is to generate interval predictions and give confidence intervals for future generation power of 1-120 seconds. Due to the randomness of wind and solar power generation, it is difficult to accurately predict by using deter...
	In this study, we aim to forecast data for the next 120 seconds. Having analyzed the previous data, we have identified the periodic patterns in wind and solar power generation, which are significantly influenced by seasonal changes and geographical fa...
	The yellow line is the predict values of windpower, The blue line is the predict values of solarpower.
	During the forecasting process, we utilized the most recent available time series data as reference samples to extrapolate future data. In the process of selecting sample data, several key observations were made:
	(1) The quantity of time series data selected is not necessarily better in larger quantities; there exists an optimal peak. Beyond this peak, overfitting becomes an issue, whereas below it, insufficient sample size leads to biased predictions.
	(2) The time data provided should ideally encompass complete cycles, which serves as a crucial reference for forecasting future data.
	(3) Due to the presence of noise, it is preferable to use pristine raw data without excessive data interpolation.
	(4) The selected data should be appended to the end of the original dataset to facilitate prediction. In light of these findings, we ultimately chose 360 data points located at the end of the original dataset as our sample data. This number, 360, was ...
	To ensure the accuracy of predictions and facilitate integration into power grid operations, we incorporated confidence levels and confidence intervals as criteria in our forecasting methodology. The confidence level reflects the authenticity of the p...
	6.3 Problem 3: Model Building and Solution

	VII. References
	VIII. Appendix

